1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
use std::io::{Read, Write};
use std::num::TryFromIntError;

use crate::Variable;

/// An unsigned integer value
///
/// This type encodes values in the range `0..2.pow(124)` by using the first 4
/// bits to denote an unsigned byte `length`. This length ranges from `0..=15`.
/// The remaining 4 bits of the first byte and any additional bytes are then
/// used to store the integer in big-endian encoding.
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq, Ord, PartialOrd)]
pub struct Unsigned(pub(crate) u128);

impl Unsigned {
    pub(crate) fn encode_be_bytes<W: Write, const N: usize>(
        mut value: [u8; N],
        mut output: W,
    ) -> std::io::Result<usize> {
        // Because we encode "extra bytes" in 4 bits, we must keep the extra
        // bytes to 15 or less. This only affects 128-bit encoding
        if N == 16 && value[0] >> 4 != 0 {
            return Err(std::io::Error::from(std::io::ErrorKind::InvalidData));
        }

        let (total_length, extra_bytes) = value
            .iter()
            .enumerate()
            .find_map(|(index, &byte)| {
                if byte > 0 {
                    let extra_bytes = N - 1 - index;
                    if byte < 16 {
                        Some((extra_bytes + 1, extra_bytes))
                    } else {
                        Some((extra_bytes + 2, extra_bytes + 1))
                    }
                } else {
                    None
                }
            })
            .unwrap_or((0, 0));
        let total_length = total_length.max(1);

        let extra_bytes_encoded = (extra_bytes as u8) << 4;
        if total_length > N {
            // We need an extra byte to store the length information
            output.write_all(&[extra_bytes_encoded])?;
            output.write_all(&value)?;
        } else {
            value[N - total_length] |= extra_bytes_encoded;
            output.write_all(&value[N - total_length..])?;
        }

        Ok(total_length)
    }

    pub(crate) fn decode_variable_bytes<R: Read, const N: usize>(
        mut input: R,
    ) -> std::io::Result<[u8; N]> {
        let mut buffer = [0_u8; N];
        input.read_exact(&mut buffer[0..1])?;
        let first_byte = buffer[0];
        let length = (first_byte >> 4) as usize;
        if length > N {
            return Err(std::io::Error::from(std::io::ErrorKind::InvalidData));
        }
        input.read_exact(&mut buffer[N - length..])?;
        match N - length {
            0 => {
                // We overwrite the first byte with the read operation, so we need
                // to fill back in the bits from the first byte.
                buffer[0] |= first_byte & 0b1111;
            }
            1 => {
                // Clear the top 4 bits of the first byte. The lower 4 bits may
                // still have data in them.
                buffer[0] &= 0b1111;
            }
            _ => {
                // Move the first byte's data into the last byte read, then
                // clear our initial byte.
                buffer[N - 1 - length] |= first_byte & 0b1111;
                buffer[0] = 0;
            }
        }
        Ok(buffer)
    }
}

impl Variable for Unsigned {
    fn encode_variable<W: Write>(&self, output: W) -> std::io::Result<usize> {
        Self::encode_be_bytes(self.0.to_be_bytes(), output)
    }

    fn decode_variable<R: Read>(input: R) -> std::io::Result<Self> {
        let buffer = Self::decode_variable_bytes(input)?;

        Ok(Self(u128::from_be_bytes(buffer)))
    }
}

macro_rules! impl_primitive_from_varint {
    ($ty:ty) => {
        impl TryFrom<Unsigned> for $ty {
            type Error = TryFromIntError;

            fn try_from(value: Unsigned) -> Result<Self, Self::Error> {
                value.0.try_into()
            }
        }
    };
}

macro_rules! impl_varint_from_primitive {
    ($ty:ty, $dest:ty) => {
        impl From<$ty> for Unsigned {
            fn from(value: $ty) -> Self {
                Self(<$dest>::from(value))
            }
        }
    };
}

impl_varint_from_primitive!(u8, u128);
impl_varint_from_primitive!(u16, u128);
impl_varint_from_primitive!(u32, u128);
impl_varint_from_primitive!(u64, u128);
impl_varint_from_primitive!(u128, u128);

impl_primitive_from_varint!(u8);
impl_primitive_from_varint!(u16);
impl_primitive_from_varint!(u32);
impl_primitive_from_varint!(u64);
impl_primitive_from_varint!(usize);

impl From<Unsigned> for u128 {
    fn from(value: Unsigned) -> Self {
        value.0
    }
}

impl From<usize> for Unsigned {
    fn from(value: usize) -> Self {
        Self(value as u128)
    }
}