1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
use std::ops::{Add, AddAssign, Sub, SubAssign};

use crate::traits::{IntoSigned, IntoUnsigned, Ranged};
use crate::{Point, Round, Size, Zero};

/// A 2d area expressed as an origin ([`Point`]) and a [`Size`].
#[derive(Clone, Copy, Eq, PartialEq, Hash, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Rect<Unit> {
    /// The origin of the rectangle
    pub origin: Point<Unit>,
    /// The size of the rectangle.
    pub size: Size<Unit>,
}

impl<Unit> Rect<Unit> {
    /// Returns a new rectangle.
    pub const fn new(origin: Point<Unit>, size: Size<Unit>) -> Self {
        Self { origin, size }
    }

    /// Returns a new rectangle using the given points to form the top-left and
    /// bottom-right of the rectangle.
    ///
    /// The order of the parameters does not matter. The minimum values will
    /// form the top-left and the maximum values will form the bottom-right.
    pub fn from_extents(p1: Point<Unit>, p2: Point<Unit>) -> Self
    where
        Unit: crate::Unit,
    {
        let min_x = p1.x.min(p2.x);
        let min_y = p1.y.min(p2.y);
        let max_x = p1.x.max(p2.x);
        let max_y = p1.y.max(p2.y);
        Self {
            origin: Point { x: min_x, y: min_y },
            size: Size {
                width: max_x - min_x,
                height: max_y - min_y,
            },
        }
    }

    /// Expands this rect to the nearest whole number.
    ///
    /// This function will never return a smaller rectangle.
    #[must_use]
    pub fn expand_rounded(self) -> Self
    where
        Unit: Round + crate::Unit,
    {
        let (tl, br) = self.extents();

        Self::from_extents(tl.floor(), br.ceil())
    }

    /// Maps each component to `map` and returns a new value with the mapped
    /// components.
    #[must_use]
    pub fn map<NewUnit>(self, mut map: impl FnMut(Unit) -> NewUnit) -> Rect<NewUnit> {
        Rect {
            origin: self.origin.map(&mut map),
            size: self.size.map(map),
        }
    }

    /// Returns a rectangle that has been inset by `amount` on all sides.
    #[must_use]
    pub fn inset(mut self, amount: impl Into<Unit>) -> Self
    where
        Unit: Add<Unit, Output = Unit> + AddAssign<Unit> + SubAssign<Unit> + Copy,
    {
        let amount = amount.into();
        let double_amount = amount + amount;
        self.origin.x += amount;
        self.origin.y += amount;
        self.size.width -= double_amount;
        self.size.height -= double_amount;
        self
    }

    /// Converts the contents of this point to `NewUnit` using [`From`].
    pub fn cast<NewUnit>(self) -> Rect<NewUnit>
    where
        NewUnit: From<Unit>,
    {
        Rect {
            origin: self.origin.cast(),
            size: self.size.cast(),
        }
    }

    /// Converts the contents of this rect to `NewUnit` using [`TryFrom`].
    ///
    /// # Errors
    ///
    /// Returns `<NewUnit as TryFrom>::Error` when the inner type cannot be
    /// converted. For this crate's types, this genenerally will be
    pub fn try_cast<NewUnit>(self) -> Result<Rect<NewUnit>, NewUnit::Error>
    where
        NewUnit: TryFrom<Unit>,
    {
        Ok(Rect {
            origin: self.origin.try_cast()?,
            size: self.size.try_cast()?,
        })
    }

    /// Returns true if this rect contains `point`.
    pub fn contains(&self, point: Point<Unit>) -> bool
    where
        Unit: crate::Unit,
    {
        let (p1, p2) = self.extents();
        p1.x <= point.x && p1.y <= point.y && p2.x > point.x && p2.y > point.y
    }

    /// Returns true if the areas of `self` and `other` overlap.
    ///
    /// This function does not return true if the edges touch but do not overlap.
    ///
    /// ```rust
    /// use figures::{Point, Rect, Size};
    ///
    /// let a: Rect<i32> = Rect::new(Point::new(1, 1), Size::new(2, 2));
    /// let b = Rect::new(Point::new(2, 2), Size::new(1, 1));
    /// assert!(a.intersects(&b));
    /// let c = Rect::new(Point::new(3, 1), Size::new(1, 1));
    /// assert!(!a.intersects(&c));
    /// ```
    pub fn intersects(&self, other: &Self) -> bool
    where
        Unit: Add<Output = Unit> + Ord + Copy,
    {
        let (
            Point {
                x: r1_left,
                y: r1_top,
            },
            Point {
                x: r1_right,
                y: r1_bottom,
            },
        ) = self.extents();
        let (
            Point {
                x: r2_left,
                y: r2_top,
            },
            Point {
                x: r2_right,
                y: r2_bottom,
            },
        ) = other.extents();
        !(r1_right <= r2_left || r2_right <= r1_left || r1_bottom <= r2_top || r1_top >= r2_bottom)
    }

    /// Returns the overlapping rectangle of `self` and `other`. If the
    /// rectangles do not overlap, None will be returned.
    ///
    /// ```rust
    /// use figures::{Point, Rect, Size};
    ///
    /// let a: Rect<i32> = Rect::new(Point::new(1, 1), Size::new(3, 3));
    /// let b = Rect::new(Point::new(2, 2), Size::new(3, 3));
    /// assert_eq!(
    ///     a.intersection(&b),
    ///     Some(Rect::new(Point::new(2, 2), Size::new(2, 2)))
    /// );
    /// let c = Rect::new(Point::new(4, 1), Size::new(1, 1));
    /// assert_eq!(a.intersection(&c), None);
    /// ```
    pub fn intersection(&self, other: &Self) -> Option<Rect<Unit>>
    where
        Unit: crate::Unit,
    {
        let (a1, a2) = self.extents();
        let (b1, b2) = other.extents();
        let x1 = a1.x.max(b1.x);
        let x2 = a2.x.min(b2.x);
        if x2 > x1 {
            let y1 = a1.y.max(b1.y);
            let y2 = a2.y.min(b2.y);
            if y2 > y1 {
                return Some(Rect::from_extents(Point::new(x1, y1), Point::new(x2, y2)));
            }
        }
        None
    }

    /// Returns the non-origin point.
    pub fn extent(&self) -> Point<Unit>
    where
        Unit: crate::Unit,
    {
        self.origin + self.size
    }
}

impl<Unit> Rect<Unit>
where
    Unit: Add<Output = Unit> + Ord + Copy,
{
    /// Returns the top-left and bottom-right points of this rectangle.
    ///
    /// The first point returned will always be the top-right point, even if the size of the rectangle is negative.
    pub fn extents(&self) -> (Point<Unit>, Point<Unit>) {
        let extent = self.origin + self.size;
        (
            Point::new(self.origin.x.min(extent.x), self.origin.y.min(extent.y)),
            Point::new(self.origin.x.max(extent.x), self.origin.y.max(extent.y)),
        )
    }
}

impl<Unit> Default for Rect<Unit>
where
    Unit: Default,
{
    fn default() -> Self {
        Self {
            origin: Point::default(),
            size: Size::default(),
        }
    }
}

impl<Unit> IntoUnsigned for Rect<Unit>
where
    Unit: IntoUnsigned,
{
    type Unsigned = Rect<Unit::Unsigned>;

    fn into_unsigned(self) -> Self::Unsigned {
        Rect {
            origin: self.origin.into_unsigned(),
            size: self.size.into_unsigned(),
        }
    }
}

impl<Unit> IntoSigned for Rect<Unit>
where
    Unit: IntoSigned,
{
    type Signed = Rect<Unit::Signed>;

    fn into_signed(self) -> Self::Signed {
        Rect {
            origin: self.origin.into_signed(),
            size: self.size.into_signed(),
        }
    }
}

impl<Unit> From<Size<Unit>> for Rect<Unit>
where
    Unit: Default,
{
    fn from(size: Size<Unit>) -> Self {
        Self::new(Point::default(), size)
    }
}

impl<Unit> Add<Point<Unit>> for Rect<Unit>
where
    Unit: Add<Output = Unit>,
{
    type Output = Self;

    fn add(self, rhs: Point<Unit>) -> Self::Output {
        Self::new(self.origin + rhs, self.size)
    }
}

impl<Unit> Sub<Point<Unit>> for Rect<Unit>
where
    Unit: Sub<Output = Unit>,
{
    type Output = Self;

    fn sub(self, rhs: Point<Unit>) -> Self::Output {
        Self::new(self.origin - rhs, self.size)
    }
}

impl<Unit> Ranged for Rect<Unit>
where
    Unit: Ranged,
{
    const MAX: Self = Self::new(Point::MAX, Size::MAX);
    const MIN: Self = Self::new(Point::MIN, Size::MIN);
}

impl<Unit> Zero for Rect<Unit>
where
    Unit: Zero,
{
    const ZERO: Self = Self {
        origin: Point::ZERO,
        size: Size::ZERO,
    };

    fn is_zero(&self) -> bool {
        self.origin.is_zero() && self.size.is_zero()
    }
}

#[test]
fn intersection() {
    assert_eq!(
        Rect::<i32>::new(Point::new(1, 1,), Size::new(3, 3))
            .intersection(&Rect::new(Point::new(2, 2,), Size::new(3, 3))),
        Some(Rect::new(Point::new(2, 2,), Size::new(2, 2)))
    );
}